Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6674/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

June 2008 Further Pure FP1 Mark Scheme

Question number	Scheme	Marks	
1.	(a) 4	B1	(1)
	(b) $(x-4)(x^2+4x+16)$	M1 A1	
	$x = \frac{-4 \pm \sqrt{16 - 64}}{2}, \qquad x = -2 \pm 2\sqrt{3} i \qquad \text{(or equiv. surd for } 2\sqrt{3}\text{)}$	M1, A1	(4)
	(c) •		
	Root on + ve real axis, one other in correct quad.	B1	
	Third root in conjugate complex position	B1ft	(2) 7
	M1 in part (b) needs(x-"their 4") times quadratic($x^2 + ax +$) or times($x^2 + 16$)		
	M1 needs solution of three term quadratic		
	So $(x^2 + 16)$ special case, results in B1M1A0M0A0B0B1 possibly		
	Alternative scheme for (b)		
	$(a+ib)^3 = 64$, so $a^3 + 3a^2ib + 3a(ib)^2 + (ib)^3 = 64$ and equate real, imaginary parts	M1	
	so $a^3 - 3ab^2 = 64$ and $3a^2b - b^3 = 0$	A1	
	Solve to obtain $a = -2$, $b = \sqrt{12}$	M1A1	
	Alternative ii		
	(x-4)(x-a-ib)(x-a+ib) = 0 expand and compare coefficients	M1	
	two of the equations $-2a-4=0$, $8a+a^2+b^2=0$, $4(a^2+b^2)=64$	A1	
	Solve to obtain $a = -2$, $b = \sqrt{12}$	M1A1	
	(c)Allow vectors, line segments or points in Argand diagram.		
	Extra points plotted in part (c) – lose last B mark		
	Part (c) answers are independent of part (b)		

Question number	Scheme	Marks	
2.	(a) $f(1.6) =$ $f(1.7) =$ (Evaluate both)	M1	
	0.08 (or 0.09), -0.3 One +ve, one –ve or Sign change, \therefore root	A1 (2)
	(b) $f'(x) = -4\sin x - e^{-x}$	B1	
	$1.6 - \frac{f(1.6)}{f'(1.6)}$	M1	
	$=1.6 - \frac{4\cos 1.6 + e^{-1.6}}{(-4\sin 1.6 - e^{-1.6})} \qquad \left(=1.6 - \frac{0.085}{-4.2}\right)$	A1	
	= 1.62	A1 (4	4)
	(a) Any errors seen in evaluation of f(1.6) or f(1.7) lose A mark so –0.32 is A0 Values are 0.0851 and –0.3327 Need concluding statement also. (b) B1 may be awarded if seen in N-R as –4sin1.6 – e ^{-1.6} or as –4.2 M1 for statement of Newton Raphson (sign error in rule results in M 0) First A1 may be implied by correct work previously followed by correct answer Do not accept 1.620 for final A1. It must be given and correct to 3sf. 1.62 may follow incorrect work and is A0 No working at all in part (b) is zero marks.		

Question number	Scheme	Marks	
	(a) $z = \frac{(a+2i)(a+i)}{(a-i)(a+i)} = \frac{a^2+3ai-2}{a^2+1}$	M1 A1	
	$\frac{a^2 - 2}{a^2 + 1} = \frac{1}{2}$, $2a^2 - 4 = a^2 + 1$ $a = \sqrt{5}$ (presence of $-\sqrt{5}$ also is A0)	M1, A1	(4)
	(b) Evaluating their " $\frac{3a}{a^2+1}$ ", or " $3a$ " $\left(\frac{\sqrt{5}}{2} \text{ or } 3\sqrt{5}\right)$ (ft errors in part a)	B1ft	
	$\tan \theta = \frac{3a}{a^2 - 2} \ (= \frac{3\sqrt{5}}{3})$, arg $z = 1.15$ (accept answers which round to 1.15)	M1, A1	(3)
			7
	(b) B mark is treated here as a method mark		
	The M1 is for tan (argz) = Imaginary part / real part		
	answer in degrees is A0		
	Alternative method:		
	(a) $\left(\frac{1}{2} + iy\right)(a - i) = a + 2i \implies \frac{1}{2}a + y = a \text{ and } ay - \frac{1}{2} = 2$	M1 A1	
	$y = \frac{1}{2}a$ and $ay = \frac{5}{2} \implies \frac{1}{2}a^2 = \frac{5}{2} \implies a = \sqrt{5}$	M1 A1	(4)
	(b) $y = \frac{\sqrt{5}}{2}$ (May be seen in part (a))	B1ft	
	$\tan \theta = \sqrt{5} \qquad \text{arg } z = 1.15$	M1 A1	(3)
	Further Alternative method in (b)	B1	
	Use $arg(a+2i) - arg(a-i)$ = 0.7297 - (-0.4205) = 1.15	M1A1	(3)

Question number	Scheme	Marks
4.	(a) $m^2 + 4m + 3 = 0$ $m = -1$, $m = -3$	M1 A1
	C.F. $(x =) Ae^{-t} + Be^{-3t}$ must be function of t, not x	A1
	P.I. $x = pt + q$ (or $x = at^2 + bt + c$)	B1
	4p+3(pt+q)=kt+5 $3p=k$ (Form at least one eqn. in p and/or q)	M1
	4p + 3q = 5	
	$p = \frac{k}{3},$ $q = \frac{5}{3} - \frac{4k}{9} \left(= \frac{15 - 4k}{9} \right)$	A1
	General solution: $x = Ae^{-t} + Be^{-3t} + \frac{kt}{3} + \frac{15 - 4k}{9}$ must include x = and be function of t	A1 ft (7)
	(b) When $k = 6$, $x = 2t - 1$	M1 A1cao (2)
	(a) M1 for auxiliary equation substantially correct B1 not awarded for $x = kt$ +constant (b) M mark for using $k = 6$ to derive a linear expression in t . (cf must have involved negative exponentials only) so e.g. $y = 2t - 1$ is M1 A0	

Question number	Scheme	Marks	
5.	(a) $\frac{4}{x} = \frac{x}{2} + 3$ $x^2 + 6x - 8 = 0$ $x =, \left(\frac{-6 \pm \sqrt{68}}{2}\right)$ $-3 \pm \sqrt{17}$ - root not needed	M1, A1	
	$-\frac{4}{x} = \frac{x}{2} + 3$, $x^2 + 6x + 8 = 0$ $x = -4$ and -2	M1, A1	
	Three correct solutions (and no extras): -4 , -2 , $-3 + \sqrt{17}$	A1	(5)
	(b) Line through point on		
	-ve x axis and + y axis	B1	
	Curve	B1	
	3 Intersections in		
	correct quadrants	B1	(3)
	(c) $-4 < x < -2$, $x > -3 + \sqrt{17}$ o.e.	B1, B1	(2)
			10
	(a) Alternative using squaring method Square both sides and attempt to find roots	M1	
	$x^4 + 12x^3 + 36x^2 - 64 = 0$ gives $x = -2$ and $x = -4$	A1	
	Obtain quadratic factor, divide find solutions of quadratic and obtain $\left(-3 \pm \sqrt{17}\right)$	M1 A1	
	Last mark as before		
	(c) Use of ≤ instead of < lose last B1 Extra inequalities lose last B1		

Question number	Scheme	Marks
6.	(a) $\frac{2}{(r+1)(r+3)} = \frac{1}{r+1} - \frac{1}{r+3}$ M: $\frac{2}{(r+1)(r+3)} = \frac{A}{r+1} + \frac{B}{r+3}$	M1 A1 (2)
	(b) $r = 1$: $\left(\frac{2}{2 \times 4}\right) = \frac{1}{2} - \frac{1}{4}$	M1
	$r=2: \qquad \left(\frac{2}{3\times 5}\right) = \frac{1}{3} - \frac{1}{5}$	
	$r = n - 1$: $\left(\frac{2}{n(n+2)}\right) = \frac{1}{n} - \frac{1}{n+2}$	
	$r = n$: $\left(\frac{2}{(n+1)(n+3)}\right) = \frac{1}{n+1} - \frac{1}{n+3}$	A1 ft
	Summing: $\sum = \frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3}$	M1 A1
	$= \frac{5(n+2)(n+3) - 6(n+3) - 6(n+2)}{6(n+2)(n+3)} = \frac{n(5n+13)}{6(n+2)(n+3)}$	d M1 A1cso (6)
	(c) $\sum_{21}^{30} = \sum_{1}^{30} - \sum_{1}^{20} = \frac{30 \times 163}{6 \times 32 \times 33} - \frac{20 \times 113}{6 \times 22 \times 23}, = 0.02738$	M1A1ft,A1cso (3)
		(11)
	(b) The first M1 requires list of first two and last two terms	
	The A1 must be correct but ft on their A and B	
	The second M1 requires terms to be eliminated and A1 is cao	
	(c) The M mark is also allowed for $\sum_{1}^{30} - \sum_{1}^{21}$ applied with numbers included	
	Using $u_{30} - u_{20}$ scores M0 A0 A0	
	The first A1 is ft their A and B or could include A and B , but final A1 is cao but	
	accept 0.027379775599 to 5 or more decimal places	

Question number	Scheme	Marks
7.	$a) \frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$	B1
	$\left(v + x\frac{dv}{dx}\right) = \frac{x}{vx} + \frac{3vx}{x} \implies x\frac{dv}{dx} = 2v + \frac{1}{v} $ (*)	M1 A1 (3)
	(b) $\int \frac{v}{1+2v^2} dv = \int \frac{1}{x} dx$	M1
	$\frac{1}{4}\ln(1+2v^2), = \ln x \ (+C)$	dM1 A1, B1
	$Ax^4 = 1 + 2v^2$	d M1
	$Ax^{4} = 1 + 2\left(\frac{y}{x}\right)^{2} \text{ so } y = \sqrt{\frac{Ax^{6} - x^{2}}{2}} \text{ or } y = x\sqrt{\frac{Ax^{4} - 1}{2}} \text{ or } y = x\sqrt{\left(\frac{1}{2}e^{4\ln x + 4c} - \frac{1}{2}\right)}$	M1 A1 (7)
	(c) $x = 1$ at $y = 3$: $3 = \sqrt{\frac{A-1}{2}}$ $A =$	M1
	$y = \sqrt{\frac{19x^6 - x^2}{2}}$ or $y = x\sqrt{\frac{19x^4 - 1}{2}}$	A1 (2) 12
	(a) B1 for statement printed or for $\frac{dy}{dx} = (x + v\frac{dx}{dv})\frac{dv}{dx}$	
	First M1 is for RHS of equation only but for A1 need whole answer correct.	
	(b) First M1 accept $\int \frac{1}{2\nu + \frac{1}{\nu}} d\nu = \int \frac{1}{x} dx$	
	Second M1 requires an integration of correct form ½ may be missing	
	A1 for LHS correct with $\frac{1}{4}$ and B1 is independent and is for $\ln x$	
	Third M1 is dependent and needs correct application of log laws	
	Fourth M1 is independent and merely requires return to y/x for v	
	N.B. There is an IF method possible after suitable rearrangement – see note.	

Question	Scheme	Marks	
number	Scheme	Iviaiks	
8.	(a) $r\cos\theta = 4(\cos\theta - \cos^2\theta)$ or $r\cos\theta = 4\cos\theta - 2\cos 2\theta - 2$	B1	
	$\frac{d(r\cos\theta)}{d\theta} = 4(-\sin\theta + 2\cos\theta\sin\theta) \text{ or } \frac{d(r\cos\theta)}{d\theta} = 4(-\sin\theta + \sin2\theta)$	M1 A1	
	$4(-\sin\theta + 2\cos\theta\sin\theta) = 0 \implies \cos\theta = \frac{1}{2}$ which is satisfied by $\theta = \frac{\pi}{3}$ and $r = 2(*)$	d M1 A1	(5)
	(b) $\frac{1}{2} \int r^2 d\theta = (8) \int (1 - 2\cos\theta + \cos^2\theta) d\theta$	M1	
	$= (8) \left[\theta - 2\sin\theta + \frac{\sin 2\theta}{4} + \frac{\theta}{2} \right]$	M1 A1	
	$8\left[\frac{3\theta}{2} - 2\sin\theta + \frac{\sin 2\theta}{4}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} = 8\left(\left(\frac{3\pi}{4} - 2\right) - \left(\frac{\pi}{2} - \sqrt{3} + \frac{\sqrt{3}}{8}\right)\right) = 2\pi - 16 + 7\sqrt{3}$	M1	
	Triangle: $\frac{1}{2}(r\cos\theta)(r\sin\theta) = \frac{1}{2} \times 1 \times \sqrt{3} = \frac{\sqrt{3}}{2}$	M1 A1	
	Total area: $(2\pi - 16 + 7\sqrt{3}) + \frac{\sqrt{3}}{2} = (2\pi - 16) + \frac{15\sqrt{3}}{2}$	(A1) A1	(8) 13
			13
	(a) Alternative for first 3 marks: $\frac{dr}{d\theta} = 4\sin\theta$ dr dr dr dr		
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -r\sin\theta + \cos\theta \frac{\mathrm{d}r}{\mathrm{d}\theta} = -4\sin\theta + 8\sin\theta\cos\theta $ M1 A1		
	Substituting $r = 2$ and $\theta = \frac{\pi}{3}$ into original equation scores 0 marks.		
	(b) M1 needs attempt to expand $(1-\cos\theta)^2$ giving three terms (allow slips)		
	Second M1 needs integration of $\cos^2 \theta$ using $\cos 2\theta \pm 1$ Third M1 needs correct limits- may evaluate two areas and subtract		
	M1 needs attempt at area of triangle and A1 for cao Next A1 is for value of area within curve, then final A1 is cao, must be exact but allow 4 terms and isw for incorrect collection of terms		
	Special case for use of rsin θ gives B0M1A0M0A0		